参考文献
该文章参考自以下博客人工智能知识分享
概述
树状图是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
- 每个结点有零个或多个子结点
- 没有父结点的结点称为根结点
- 每一个非根结点有且只有一个父结点
- 除了根结点外,每个子结点可以分为多个不相交的子树
值得注意的是,树结构是一种非线性存储结构,存储的是具有“一对多”关系的数据元素的集合。
树的种类
-
无序树
树的任意节点的子节点没有顺序关系
-
有序树
树的任意节点的子节点有顺序关系
-
二叉树
树的节点至多包含两颗子树
-
满二叉树
叶子节点都在同一层并且除叶子节点外的所有节点都有两个子节点。
-
完全二叉树
对于一颗二叉树,假设其深度为d(d>1)。除第d层外的所有节点构成满二叉树,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树;
-
完满二叉树
除叶子节点之外的每个节点都有两个子节点。
-
霍夫曼树(最优二叉树)
带权路径最短的二叉树
-
二叉查找树(二叉搜索树、二叉排序树、BST)
若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;任意节点的左、右子树也分别为二叉查找树;没有键值相等的节点。
-
平衡二叉树
它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树,同时,平衡二叉树必定是二叉搜索树。
-
AVL树
在计算机科学中,AVL树是最先发明的自平衡二叉查找树。在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。AVL树本质上还是一棵二叉搜索树,它的特点是:1.本身首先是一棵二叉搜索树。2.带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1。也就是说,AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树)。使用场景:AVL树适合用于插入删除次数比较少,但查找多的情况。也在
Windows进程地址空间管理中得到了使用旋转的目的是为了降低树的高度,使其平衡。
-
红黑树
红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色。在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:性质1. 节点是红色或黑色。性质2. 根节点是黑色。性质3. 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)性质4. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。使用场景:红黑树多用于搜索,插入,删除操作多的情况下红黑树应用比较广泛:(1)广泛用在
C++的STL中。map和set都是用红黑树实现的。(2) 著名的linux进程调度Completely Fair Scheduler,用红黑树管理进程控制块。(3)epoll在内核中的实现,用红黑树管理事件块(4)nginx中,用红黑树管理timer等
-
伸展树
伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(log n)内完成插入、查找和删除操作。它由丹尼尔·斯立特Daniel Sleator 和 罗伯特·恩卓·塔扬Robert Endre Tarjan 在1985年发明的。在伸展树上的一般操作都基于伸展操作:假设想要对一个二叉查找树执行一系列的查找操作,为了使整个查找时间更小,被查频率高的那些条目就应当经常处于靠近树根的位置。于是想到设计一个简单方法, 在每次查找之后对树进行重构,把被查找的条目搬移到离树根近一些的地方。伸展树应运而生。伸展树是一种自调整形式的二叉查找树,它会沿着从某个节点到树根之间的路径,通过一系列的旋转把这个节点搬移到树根去。它的优势在于不需要记录用于平衡树的冗余信息。
-
替罪羊树
替罪羊树是计算机科学中,一种基于部分重建的自平衡二叉搜索树。在替罪羊树上,插入或删除节点的平摊最坏时间复杂度是O(log n),搜索节点的最坏时间复杂度是O(log n)。在非平衡的二叉搜索树中,每次操作以后检查操作路径,找到最高的满足max(size(son_L),size(son_R))>alpha*size(this)的结点,重建整个子树。这样就得到了替罪羊树,而被重建的子树的原来的根就被称为替罪羊节点。替罪羊树替罪羊树是一棵自平衡二叉搜索树,由ArneAndersson提出。替罪羊树的主要思想就是将不平衡的树压成一个序列,然后暴力重构成一颗平衡的树。
-
B-树
一棵m阶B树(balanced tree of order m)是一棵平衡的m路搜索树。它或者是空树,或者是满足下列性质的树:
1、根结点至少有两个子女;
2、每个非根节点所包含的关键字个数 j 满足:┌m/2┐ – 1 <= j <= m – 1;
3、除根结点以外的所有结点(不包括叶子结点)的度数正好是关键字总数加1,故内部子树个数 k 满足:┌m/2┐ <= k <= m ;
4、所有的叶子结点都位于同一层。B树(B-Tree)是一种自平衡的树,它是一种多路搜索树(并不是二叉的),能够保证数据有序。同时它还保证了在查找、插入、删除等操作时性能都能保持在
O(logn),为大块数据的读写操作做了优化,同时它也可以用来描述外部存储(支持对保存在磁盘或者网络上的符号表进行外部查找)
-
B+树
B+树是B树的一种变形形式,B+树上的叶子结点存储关键字以及相应记录的地址,叶子结点以上各层作为索引使用。一棵m阶的B+树定义如下:(1)每个结点至多有m个子女;
(2)除根结点外,每个结点至少有[m/2]个子女,根结点至少有两个子女;
(3)有k个子女的结点必有k个关键字。
B+树的查找与B树不同,当索引部分某个结点的关键字与所查的关键字相等时,并不停止查找,应继续沿着这个关键字左边的指针向下,一直查到该关键字所在的叶子结点为止。
更适合文件索引系统
原因: 增删文件(节点)时,效率更高,因为B+树的叶子节点包含所有关键字,并以有序的链表结构存储,这样可很好提高增删效率
使用场景:
文件系统和数据库系统中常用的B/B+ 树,他通过对每个节点存储个数的扩展,使得对连续的数据能够进行较快的定位和访问,能够有效减少查找时间,提高存储的空间局部性从而减少IO操作。他广泛用于文件系统及数据库中,如:
Windows:HPFS 文件系统
Mac:HFS,HFS+ 文件系统
Linux:ResiserFS,XFS,Ext3FS,JFS 文件系统
数据库:ORACLE,MYSQL,SQLSERVER 等中
B树:有序数组+平衡多叉树
B+树:有序数组链表+平衡多叉树
-
B*树
B*树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2)。
B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;
B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;
所以,B*树分配新结点的概率比B+树要低,空间使用率更高;
-
字典树
又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高。
它有3个基本性质:
根节点不包含字符,除根节点外每一个节点都只包含一个字符;
从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串;
每个节点的所有子节点包含的字符都不相同。
-
线索二叉树
在二叉树的结点上加上线索的二叉树称为线索二叉树,对二叉树以某种遍历方式(如先序、中序、后序或层次等)进行遍历,使其变为线索二叉树的过程称为对二叉树进行线索化
总结




